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 Abstract – We present a state-feedback control of a two-link 
flexible-joint robot. First, we obtain desired control laws from 
Lyapunov’s second method. Then, we use three-layer neural 
networks to learn unknown parts of the desired control laws. In 
this way, the control algorithm does not require the mathematical 
model representing the robot. We use smooth variable structure 
controller to handle the uncertainties from neural network 
approximation and external disturbances. To show the 
effectiveness and practicality of this control algorithm, we 
performed an experiment on one of the robots in our laboratory. 
 
 Index Terms – Flexible-joint robot, Intelligent control, 
Backstepping, Variable structure control. 
 

I.  INTRODUCTION 

 The joint flexibility exists in most robots. It arises from 
driving components such as actuators, gear teeth, or 
transmission belts. In some applications, the designers 
incorporate flexible joints into their products intentionally to 
absorb impact force and to reduce damage to the parts from 
accidental collision. 
 Controller designers should explicitly include joint 
flexibility in their design because joint resonant frequencies, 
which are located within the control bandwidth, can be excited 
and cause severe oscillations. The experiment in [1] suggested 
that the designers should consider joint flexibility in both 
modeling and control design. 
 Controller design of two-link flexible-joint robot is 
challenging because its model is much more complicated than 
those of rigid-joint robot and one-link flexible-joint robot. 
Besides, the number of degree of freedom is twice the number 
of control inputs, which results in the lost of matching property 
between nonlinearities and the inputs and the lost of passivity 
from inputs to link velocities. 
 References [2] and [3] offer two choices of slow and fast 
variables in order to transform the dynamical model of the 
flexible-joint robot into the standard singular perturbation 
model. Slow-control input, which adds damping to the system, 
drives the closed-loop system to a quasi-steady state system 
that has the structure of a rigid-joint robot. Then, fast-control 
input can be designed using available techniques for the rigid-
joint robot. 
 Reference [4] presents static feedback linearization 
method. Under the assumption that the kinetic energy of the 
motor is due mainly to its own rotation, the flexible-joint robot 
model is feedback linearizable. Reference [5] relaxes this 

assumption, and applies the so-called dynamic feedback 
linearization method to a more general robot model. Reference 
[6] offers a good comparison of three types of controllers: 
controller developed from decoupled model, backstepping 
controller, and passivity-based controller. 
 Newer results use intelligent systems to learn some or all 
of the unknown parts of the robot model. Reference [7] 
extends the work in [2] to the case where model uncertainties 
exist in the system. They use radial basis function networks to 
estimate unknown functions, and use discontinuous variable-
structure controller to provide robustness to the closed-loop 
system. Reference [8] uses combinations of orthonormal basis 
functions to estimate unknown functions; they also present an 
experiment result of one-link flexible-joint robot. Reference 
[9] uses feedback linearization method and Takagi-Sugeno 
fuzzy system to replace model uncertainties. 
 In this paper, we consider the trajectory-tracking task of a 
two-link flexible-joint robot in horizontal plane. The controller 
algorithm does not require closed-form mathematical model of 
the robot. We design control laws from Lyapunov’s second 
method using backstepping structure. Then, three-layer neural 
networks are used to estimate unknown parts of the desired 
control laws – usually called direct method by adaptive control 
community. We use variable structure controller to provide 
robustness to the system against uncertainties from the 
estimation errors, actuator nonlinearities, and external 
disturbances. 
 We organize this paper as follows. Section II contains 
details on the robot and the experiment setup. Section III 
contains three-layer neural network background and controller 
design. Section IV contains experiment results. Section V is 
conclusion of the paper. 
 

II.  A TWO-LINK FLEXIBLE-JOINT ROBOT 

 Fig. 1 depicts a robot, for which we are designing the 
controller. The robot operates in horizontal plane, has two 
links and two motors. Input torque 1u  is applied to the first 
motor, which drives the first sprocket through a chain. The 
sprocket is attached to the first link via the first torsional 
spring that provides joint flexibility. The second motor is 
situated on the first link. Input torque 2u  is applied to the 
second motor which drives the second sprocket. The second 
sprocket is attached to the second link via the second torsional 
spring. Note that the second motor’s shaft does not share the 



same axis with the axis of rotation of the second link. This 
setting is more practical than the shared-axis cases commonly 
treated in existing literature. 
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Fig. 1. Photograph of the two-link flexible-joint robot in our laboratory. 

 There are four optical encoders; each measures angular 
positions of the two links and the two motors. Angular 
velocities are obtained from numerical differentiation of the 
position signals. Two current amplifiers supply current to the 
two motors. 
 Fig. 2 depicts overall experiment setup. We use Labview 
7.1, Labview Real-Time Module, and Labview FPGA Module 
to perform hardware-in-the-loop experiment. The data 
acquisition board is National Instruments’ PCI-7831R. 
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Fig. 2. Diagram showing overall experiment setup. 

 We let 1θ  be absolute angular position of the first link, 2θ  
be relative angular position of the second link, 3θ  be absolute 
angular position of the first motor, and 4θ  be relative angular 
position of the second motor. If we let  

[ ] [ ]1 11 12 1 2, ,T T
x x x θ θ= =  and [ ]2 21 22 1 2, ,

T
x x x θ θ� �= = � �

� �  be 

state vectors representing link position and velocity, 
[ ] [ ]3 31 32 3 4, , T

x x x θ θ= =  and [ ]4 41 42 3 4, ,
T

x x x θ θ� �= = � �
� �  be 

state vectors representing motor position and velocity, and 
[ ]1 2, T

u u u=  be input vector representing input torque, 
reference [10] shows that the equations of motion of this robot 
can be put in the following state space form: 
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where { }11 12 1 2, , , , ;i i ix x x x x= �  2
2 4,f f ∈�  and 2 2

2 4,g g ×∈�  
are vectors and matrices that contain smooth functions; 

( ) [ ]4 1 2, T

ai ai aid x d d=  is additive disturbance vector that may 
depend on all states. 
 In the next section, we will design a controller for the 
system in the form of (1), where 2 4 2, , ,f f g  and 4g  are 
unknown. The disturbance aid  is bounded by an unknown 
constant. 

III.  CONTROLLER DESIGN 

 We, first, present some basics of the three-layer neural 
network followed by the controller design. 

A. Three-Layer Neural Network 
 Fig. 3 depicts a three-layer neural network. Suppose, a 
scalar-valued continuous function ( )1 2, , , : n

nh z z z →� � �  is 
to be estimated by the neural network. We have 1 2, , , ,1nz z z�  
as inputs to the neural network. Variables in the network are 
defined as follows: 
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( )s �  is a sigmoid function 

 ( ) ( )1/ 1 ,xs x e x−= + ∀ ∈� . 

 This network can uniformly approximate any scalar-
valued continuous function to any arbitrary accuracy with 
some constant ideal weights * *, ,W V  and some appropriate 
number of hidden-layer nodes, * ,l  as was proved in [11]. 
 From the universal approximation property, we have 

 * *
1 2( , , , ) ( ) ,T T

nh z z z W S V Z ε= +�  (2)    

where Uε ε<  is approximation error with unknown 0Uε >  



providing that ( )h ⋅  is defined on a compact set .zΩ  
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Fig. 3. A three-layer neural network. The square represents node whose output 

contains adjustable parameters. 

The ideal weights generally are unknown. However, in 
system identification application, the ideal weights are 
typically assumed constant and bounded as in the following 
Assumption. 
 Assumption 1: On the compact set zΩ , the ideal neural 
network weights * *,W V  are constant and bounded by 

* *, , 1, ,U UF
W W V V i m≤ ≤ = � , where UW  and UV  are 

unknown. 
 Since ideal weights are unknown, let Ŵ  and V̂  be the 
estimates of *W  and *V  respectively. The estimate of the 
function h  is given by 

 ( ) ( )1 2
ˆ ˆ ˆ, , , .T T

nh z z z W S V Z=�  (3) 

 By using Lemma 3.6 in [12], the difference between 
neural network output with ideal and estimated weights are 
given by 
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where  
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The residual term ud  is bounded by 

 * ' * ' *

1
ˆ ˆˆ ˆ .T T

u F F
d V ZW S W S V Z W≤ + +  (5) 

 Note that W�  and V�  appear linearly in (4). This is 
important since from Assumption 1, ˆW W= ���  and ˆV V= ��� , 
therefore the weight adaptation laws can be easily designed 

using this linear structure. 

B. Backstepping and Variable Structure Controller 
 In this section, we design a controller that makes link 
angular positions 1θ  and 2θ  track desired values whereas all 
closed-loop signals remain bounded. We require the following 
assumptions. 
 Assumption 2: The additive disturbance ( )4 ,aikd x  where 

1, , 4, 1,2,i k= =�  is bounded by ( )4 ,aik aikUd x d<  where 
aikUd  is unknown constant. 

 Assumption 3: The inverses of , 2, 4,ig i∀ =  matrices in 
(1) are positive definite. 
 Assumption 4: The desired trajectory [ ]1 11 12, T

d d dx x x=  is 
sufficiently smooth. 
 In backstepping design, we try to reduce the error between 
actual state and desired state of each subsystem. The tracking 
error is the error of the first subsystem. Let 

[ ]1 2, , 1, , 4T

i i i i ide e e x x i= = − = �  be those errors. 
 Step 1:  
 Let the virtual control law of the first subsystem be 

 [ ]2 1 1 1 2 21 22, ,T

d d dvsc d dx c e x u x x= − + + =�  

where 1c  is a positive design parameter, 2dvscu  is variable 
structure control law to be designed. From Assumption 2, we 
have the following inequality 

 ( ) *
1 4 1 1 , 1, 2,T

a j j jd x K jφ≤ ∀ =  

where *
1 1 ,j a jUK d=  1 1.jφ =  

 We let the smooth variable structure control law be in the 
form [ ]2 2 1 2 2, ,T

dvsc dvsc dvscu u u=  where 

 1
2 1 1 1

1

2ˆ ˆ arctan ,j
dvscj j j j

j

e
u K Kφ

π µ
� �� �
� �= − = − � �� �� �

	 
	 

 

1 jµ  is a small positive design parameter, 1
ˆ

jK  approximates 
*
1 jK  with error given by *

1 1 1
ˆ .j j jK K K= −�  

 The time derivative of the error of the first subsystem 
becomes 
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 Let the weight update law be 

 1 1 1 1 1 1
ˆ ˆ[ ],j k j j j k j jK e Kφ σ= Γ −�  

where 1 10, 0, 1, 2.k j k j jσΓ > > ∀ =  
 Using the following facts 
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the time derivative of the Lyapunov function  
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where  

 ( )2 2*
1 1 1 1 1

1

0.2785 / 2 .j a jU k j j
j

d Kξ µ σ
=

= +�  

 Step 2: 
 This step is different from the first step because there are 
unknown functions 2f  and 2g  in this second subsystem.  
 The time-derivative of the error of the second subsystem is 
given by 

 ( )2 2 2 2 2 3 2 2 .d a de x x f g x d x= − = + + −� � � �  

 Suppose we know 2f  and 2 ,g  assume there is no 
disturbance 1ad  and 2ad  for now, we can choose the virtual 
control input as 

 ( )* 1
3 1 2 2 2 2 2 .d dx e c e g f x−= − − − − �  (7) 

Using the Lyapunov function 1
2 1 1 2 2 2/ 2 / 2,T TV e e e g e−= +  we 

have 2 1 1 1 2 2 2
T TV c e e c e e= − −�  which is negative definite, 

therefore, the error 1e  and 2e  converge to zero. 
 Since we do not know 2f  and 2 ,g  we need to modify the 
ideal control input *

3 .dx  From (7), the unknown part is 
( ) [ ]1* * * 2

2 2 2 2 2 2 2 21 22( ) ( ) , ,
T

dh Z g x f x x h h
−

� �− = ∈� ��� �  where *
2 jh  

is a scalar-valued continuous function of 1 2, ,x x  and 2 .jdx�  We 
proceed by estimating each unknown part using a three-layer 
neural network. From (2), we have 

 
* *

* 21 21 21 21 21
3 1 2 2 * *

22 22 22 22 22

( )
.

( )

T T

d T T

W S V Z
x e c e

W S V Z

ε
ε

� �−
= − − − � 
−� �

  

*
2 jW  and *

2 jV  are unknown. Let 2
ˆ

jW  and 2̂ jV  be their estimates 
and add smooth variable structure control law to handle the 
uncertainties, we have the virtual control law 
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 From (2), (5), and Assumption 2, we have 
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2 2 2 2 2 ,T

u j j a j j jd d Kε φ+ + ≤   

where  

 

* * * *
2 2 2 2 2 21

' '
2 2 2 2 2 2 2

, , ,

ˆ ˆˆ ˆ, , 1 , 1, 2.

T

j j j j jU a jUF

T
T T

j j j j j j j
F

K V W W d

Z W S S V Z j

ε

φ

� �= + +
� �

� �= ∀ =
� �

 

 We let the smooth variable structure control law be 
[ ]3 3 1 3 2, ,T

dvsc dvsc dvscu u u=  where 
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 The time derivative of the error of the second subsystem 
becomes 
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 Let the weight update laws be 
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and using the facts (6), and 
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the time derivative of the Lyapunov function 
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derived similar to what in step 1, is given by 
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where  
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 Step 3: 
 This step is similar to step 1. Let the virtual control law be 

 [ ]4 2 3 3 3 4 41 42, .T

d d dvsc d dx e c e x u x x= − − + + =�  

We use the smooth variable structure control law as 
[ ]4 4 1 4 2, ,T

dvsc dvsc dvscu u u=  where 
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The weight update law is 3 3 3 3 3 3
ˆ ˆ[ ].j k j j j k j jK e Kφ σ= Γ −�  

 Using similar derivation to what in step 1, the time 
derivative of the Lyapunov function 
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 This is the last step and is similar to what in step 2. Let the 
actual control law be 
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The smooth variable structure control law is  
[ ]5 5 1 5 2, ,T

dvsc dvsc dvscu u u=  where 
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 Let the weight update laws be 
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The time derivative of the Lyapunov function 
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derived similar to what in step 2, is given by 
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we have 4 4 .V Vς δ≤ − +�  
 From this point on, you can use standard nonlinear 
analysis technique given, for example, in [13] to conclude that 
all error trajectories are globally uniformly ultimately 
bounded. The ultimate bound, time the trajectories enter the 
bound, and all-time exponential-decay upper bound can also 
be found, but are omitted here. 

IV.  EXPERIMENT RESULTS 

 There are 4 neural networks; each has 3 hidden nodes. 
Inputs to each neural network are  
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Neural network and controller design parameters are as 



follows: 
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c
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 All initial values are set to zeros. Sampling period is 10 
ms. The desired trajectory is obtained from passing square 
wave signal of amplitude 3, and 40-second period into the 
filter 31/( 2) .s +  
 Experiment result is given in Fig. 4. The control system 
achieves good overall tracking performance as can be seen 
from the results in part (a) and (b). Both link angular positions 

1θ  and 2θ  are able to follow their desired trajectories quite 
closely. Part (c) to (f) show estimated values of the unknown 
functions. Part (g) and (h) are control inputs to the two current 
amplifiers. Their values can be converted to voltage by 
multiplying with 1610 / 2 / 2.  

V. CONCLUSION 

 The controller achieves good tracking performance. 
However, there are some interesting questions left, probably, 
as future work. First, the controller is designed based on the 
assumption that the actual robot is in the nonlinear form (1). 
The fact that the actual robot may not be exactly in this form 
may degrade the controller performance. Second, how will the 
control system handle time-varying case, for example, the 
change in payload?  
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21ĥ 22ĥ
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Fig. 4. Experiment result in 140 seconds. (a) 1θ  versus its desired trajectory 
1 .dθ  (b) 2θ  versus its desired trajectory 2 .dθ  (c) Estimated function 21
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