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ABSTRACT 
 We present a state-feedback control of a two-link flexible-
joint robot. First, we obtain desired control laws from 
Lyapunov’s second method. Then, we use three-layer neural 
networks to learn the unknown parts of the desired control laws. 
In this way, the control algorithm does not require the 
mathematical model representing the robot. We use a smooth 
variable structure controller to handle uncertainties from the 
neural network approximation and external disturbances. To 
show the effectiveness and practicality of this control algorithm, 
we performed an experiment on one of the robots in our 
laboratory.       
 Keywords: Flexible-joint robot, Intelligent control, 
Backstepping, Variable structure control. 
 
1. INTRODUCTION 
 We are interested in motion control of a flexible-joint robot 
for several reasons. First, the joint flexibility exists in most 
robots. It arises from driving components such as actuators, 
gear teeth, or transmission belts. In some applications, the 
designers incorporate flexible joints into their products 
intentionally to absorb impact force and to reduce damage to 
the parts from accidental collision. Second, control designers 
should explicitly include joint flexibility in their design because 
joint resonant frequencies, which are located within the control 
bandwidth, can be excited and cause severe oscillations. The 
experiment in [1] suggested that the designers should consider 
joint flexibility in both modeling and control design. 
 Controller design of two-link flexible-joint robot is 
challenging due to two main reasons. First, its Euler-Lagrange 
model is much more complicated than those of rigid-joint or 
one-link flexible-joint robot. Second, the number of degrees of 
freedom is twice the number of control inputs. The control 

inputs do not directly apply to the links. Instead, the control 
inputs directly apply to the motors that connect to the links via 
flexible-joint dynamics. This results in the loss of some 
important structural properties that apply for rigid-joint robots, 
such as matching property between nonlinearities and the 
inputs, passivity from inputs to link velocities.   
 There exist some well-established control designs for 
flexible-joint robots. In [2], they transform the dynamic model 
of the flexible-joint robot into the standard singular perturbation 
model, by using link position as slow variable and joint torque 
as fast variable. Controller is a composite of slow and fast 
control. Slow-control input, which adds damping to the system, 
drives the closed-loop system to a quasi-steady state system that 
has the structure of a rigid-joint robot. Then, fast-control input 
can be designed using available techniques for the rigid-joint 
robot. To avoid having to measure the joint torque signal, you 
may consult [3] for the design of an observer. Reference [4] 
shows an alternative singular perturbation model by using 
tracking error of motor shaft as fast variable. Reference [5] 
extends the work in [2] to the case where model uncertainties 
exist in the system. They use radial basis function networks to 
estimate unknown functions, and use discontinuous variable-
structure controller to provide the closed-loop system with 
robustness for the estimation errors. 
 Under the assumption that the kinetic energy of the motor 
is due mainly to its own rotation, the flexible-joint robot model 
is feedback linearizable by static feedback control laws as in 
[6]. Reference [7] relaxes this assumption, and applies the so-
called dynamic feedback linearization method to a more general 
robot model. 
 Reference [8] compares three types of controllers: 
controller developed from decoupled model, backstepping 
controller, and passivity-based controller. For the first type, 
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they interestingly decouple the robot model by using filtered 
error of link position and motor position error as variables. 
They also discuss backstepping controller when model 
parameters are unknown but can be made to appear linearly 
with respect to known functions. Passivity-based controller is 
designed to shape the closed-loop total energy to desired value 
to achieve passivity. 
 Some of the more recent work are [9]-[12]. Reference [9] 
has experimental result on one-link flexible-joint robot in 
vertical plane. Reference [10] uses feedback linearization 
method and Takagi-Sugeno fuzzy system to replace model 
uncertainties. Reference [11] contains good references on 
flexible-joint and flexible-link robots. Reference [12] is written 
from practitioner’s point of view. 
 This paper has the following features: 
 1) We consider a trajectory-tracking task of a two-link 
flexible-joint robot in the horizontal plane. The second motor is 
attached to the first link and its shaft does not share the same 
axis with the axis of rotation of the second link. This setting is 
more practical than the shared-axis cases commonly treated in 
the existing literature. 
 2) The controller algorithm does not require a closed-form 
mathematical model of the robot. We design control laws from 
Lyapunov’s second method using backstepping structure. Then, 
three-layer neural networks are used to estimate the unknown 
parts of the desired control laws – usually called direct method 
by adaptive control community. We use variable structure 
controller to provide robustness to the system against 
uncertainties from the estimation errors, actuator nonlinearities, 
and external disturbances. 
 3) We are able to control the trajectory of the robot 
effectively using link angular position, link angular velocity, 
motor angular position, and motor angular velocity. Existing 
work usually requires, in addition to the quantities above, link 
angular acceleration and jerk, or flexible-joint torque. 
 Throughout this paper, unless otherwise specified, we have 
the following definition. 
 Definition 1: We denote by �  any suitable norm. When it 
is required to be specific, we denote any p-norm by 

P
� . The 

symbol 
F
�  denotes the Frobenius norm, i.e. given a matrix A, 

the Frobenius norm is given by ( )2 2

,

.T
ijF

i j

A tr A A a= =�  
 We organize this paper as follows. Section 2 contains 
details on the robot and the experimental setup. Section 3 
contains three-layer neural network background. Section 4 
contains controller design. Section 5 contains experimental 
results. Section 6 is a conclusion of the paper. 
 
2. A TWO-LINK FLEXIBLE-JOINT ROBOT 
 Fig. 1 depicts a robot, for which we are designing the 
controller. The robot operates in the horizontal plane, has two 
links and two motors. Input torque 1u  is applied to the first 
motor, which drives the first sprocket through a chain. The 
sprocket is attached to the first link via the first torsional spring 
that provides joint flexibility. The second motor is situated on 

the first link. Input torque 2u  is applied to the second motor 
which drives the second sprocket. The second sprocket is 
attached to the second link via the second torsional spring. Note 
that the second motor’s shaft does not share the same axis with 
the axis of rotation of the second link. This setting is more 
practical than the shared-axis cases commonly treated in 
existing literature. 
 

 

1st motor

1st motor’s encoder

1st link’s encoder

2nd motor’s encoder

2nd link’s encoder

2nd motor

1st link

2nd link

 
 

Fig. 1. Photograph of the two-link flexible-joint robot in our 
laboratory. 

  
 There are four optical encoders; each measures angular 
positions of the two links and the two motors. Angular 
velocities are obtained from the Euler method 

( ) ( ) ( )1
1 ,i i

i

k k
k

ts

θ θ
θ

+ −
+ =�  

where ts  is sampling period. Two current amplifiers supply 
current to the two motors. 
 Fig. 2 depicts the overall experimental setup. We use 
Labview 7.1, Labview Real-Time Module, and Labview FPGA 
Module to perform hardware-in-the-loop experiment. The data 
acquisition board is National Instruments’ PCI-7831R. 
 The controller algorithm presented in this paper does not 
explicitly require the plant functions. However, to be able to 
design a controller to maintain closed-loop stability, we need to 
assume that the actual plant model can be put in the form: 

( ) ( )
( ) ( )

1, 1 1,

,
i i m i m i

m m m m m

x f x g x x i m

x f x g x u
+= + ≤ ≤ −

= +

�

�
 

1,y x=  (1) 

where [ ]1, , T n
nu u u= ∈� �  represents input to the system, 
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[ ]1, , T n
i i inx x x= ∈� �  represents state subvector, 

[ ]1, , T n
ny y y= ∈� �  is system output, mx  denotes the set 

{ }1, , mx x� , and , ,n n n
i if g ×∈ ∈� �  are vector and matrix of 

unknown smooth functions that may depend on all states. 
 Next, we will show that the equations of motion of our 
robot, under an assumption, can be transformed into the form 
above. 
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Fig. 2. Diagram showing overall experimental setup. 
 
 Consider the schematic diagram of a two-link flexible-joint 
robot in Fig. 3. Table I contains the description of parameters of 
the robot.  
 

TABLE I 

DESCRIPTION OF PARAMETERS USED IN THE MODELING OF THE TWO-LINK 
FLEXIBLE-JOINT ROBOT 

1st Link 1θ : Absolute angular position 
1m : Lumped mass 

1J : Moment of inertia about COG 
1a : Distance between COG of the 1st link and the 1st joint 
1b : Distance between the 1st joint and the 2nd motor 

1l : Distance between the 1st joint and the 2nd joint 
 

2nd Link 2θ : Relative angular position to 1θ  
2m : Lumped mass 

2J : Moment of inertia about COG 
2a : Distance between COG of the 2nd link and the 2nd joint 

2l : Distance between the 2nd joint and the end-effector 
 

1st Motor 3θ : Absolute angular position 
3m : Lumped mass 
3J : Inertia of the motor about COG 
3c : Coefficient of friction in the bearing of the motor 

 
2nd Motor 4θ : Relative angular position to 1θ  

4m : Lumped mass 
4J : Inertia of the motor about COG 
4c : Coefficient of friction in the bearing of the motor 

 
1st  
Sprocket 

5θ : Absolute angular position after gear reduction, 3 / rθ  
5m : Lumped mass 
5J : Moment of inertia about COG 

1c : Coefficient of friction in the bearing of the joint 
 

1st  
Spring 

5k : Coefficient of the torsional spring 
5c : Internal damping of the torsional spring 

 
2nd  
Sprocket 

6θ : Relative angular position after gear reduction, 4 / rθ  
6m : Lumped mass 
6J : Moment of inertia about COG 
2c : Coefficient of friction in the bearing of the joint 

 
2nd  
Spring 

6k : Coefficient of the torsional spring 
6c : Internal damping of the torsional spring 

 
Payload pm : Lumped mass 

pJ : Moment of inertia about COG 
 

Chain r : Gear ratio 

 
 
We let 1θ  be absolute angular position of the first link, 2θ  be 
relative angular position of the second link, 3θ  be absolute 
angular position of the first motor, and 4θ  be relative angular 
position of the second motor. We use Euler-Lagrange method to 
find dynamic equations governing the robot. First, we compute 
kinetic energy  

( )

( )( )

( )
( ) ( ) ( )

2 2 2 2 2 2
1 1 2 1 4 1 6 1 1 1 1

22 2 25
2 2 2 2 1 2 3 32

2
2 4

4 1 4 6 1

1 2 2 2 1 1 2 2

1
2
1 1
2 2

1 1
2 2

cos .

p

p p

p

K m a m l m b m l m l J

J
m a J m l J J

r

J J
r

l m a m l

θ

θ θ θ

θθ θ θ

θ θ θ θ

= + + + + +

� �+ + + + + + +� �
� �

� �
+ + + +� �

� �

+ + +

�

� � �

�
� � �

� � �

 

 To be able to transform the robot model into the form (1), 
we need the following assumption. 
 Assumption 1: The rotational kinetic energy of the second 
motor and the second sprocket is mainly due to their own 
rotation, by neglecting the kinetic energy from the rotation of 
the first link. In the kinetic energy equation, therefore, the term 

( )2

4 1 40.5J θ θ+� �  becomes 2
4 40.5J θ� , and the term 

( )2

6 1 40.5 /J rθ θ+� �  becomes ( )2

6 40.5 / .J rθ�  
 To have an idea of how significant the dropped terms are, 
consider, for example, our robot in Fig. 1 with a motor of mass 
2 kg  and inertia 20.000525 .kg m�  4θ�  can be approximated by 
multiplying 1θ�  by the gear ratio, 5.3.r =  1b  equals 0.1. For the 
second motor, the total kinetic energy, comprising translational 
kinetic energy and rotational kinetic energy, is given by 

( ) ( )2 2 2
2 4 1 1 4 4 1 4

1 1
0.001 795 .

2 2motorK m b Jθ θ θ θ= + + =� � � �    

Under  Assumption 1, the total kinetic energy of the second 
motor is 



                                                                                                    4                                                     Copyright © 2005 by ASME 

( ) ( )2 2 2
2 4 1 1 4 4 4

1 1
0.001 686 .

2 2motorK m b Jθ θ θ= + =� � �  

We can see about 6-percent error in our case. The error, 
however, is smaller with bigger gear ratio. 
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Fig. 3. Schematic diagram of a planar two-link flexible-joint 
robot. 

 
 The potential energy from both torsional springs is 

2 2
3 4

5 1 6 2

1 1
.

2 2
P k k

r r
θ θθ θ� � � �= − + −� �� �

� �� �
 

 The dissipative power from friction and damping is 
2

2 2 23
3 3 1 1 5 1 4 4

2

2 4
2 2 6 2

1 1 1 1
2 2 2 2

1 1
.

2 2

D c c c c
r

c c
r

θθ θ θ θ

θθ θ

� �
= + + − +� �

� �

� �
+ + −� �

� �

�
� � � �

�
� �

 

 The work done by input torque is 1 3 2 4 .W u uδ δθ δθ= +  
Therefore, the generalized force is 

1 2 3 1 4 20, 0, , .Q Q Q u Q u= = = =  

 The Lagrange equations are 

, 1, 2,3, 4.i
i ii i

d K K P D
Q i

dt θ θθ θ
� �∂ ∂ ∂ ∂− + + = =� � ∂ ∂∂ ∂� �
� �

 

 With straightforward derivation, we obtain four Lagrange 
equations from the kinetic energy – revised according to 
Assumption 1, the potential energy, the dissipative power, and 
the work done by input torque. Due to the size of the four 
Lagrange equations, we do not show them here, but instead, we 
skip to how we obtain the state-space model. 
 We let [ ] [ ]1 11 12 1 2, ,T T

x x x θ θ= =  and 
[ ]2 21 22 1 2, ,

T
x x x θ θ� 	= = 
 �

� �  be state vectors representing link 
position and velocity, [ ] [ ]3 31 32 3 4, , T

x x x θ θ= =  and 
[ ]4 41 42 3 4, ,

T
x x x θ θ� 	= = 
 �

� �  be state vectors representing motor 
position and velocity, and [ ]1 2, T

u u u=  be input vector 
representing input torque. The Lagrange equations can be put in 
the following form 

( ) ( )
( ) ( )

2 2 1 1 2 4 1 1 3

4 2 2 2 4 2 1 3

0,

.

Mx Vx F B x x K x x

Jx F B x x K x x u

+ + + − + − =

+ − − − − =

�

�
 (2) 

The inertia matrix is  

( ) 11 12
1

21 22

,
M M

M x
M M
� 	

= � 

 �

 

where  

( )
( ) ( ) ( )

( ) ( )

2 2 2 2 2
11 1 1 2 1 2 4 1 6 1 1 2

2 2
1 2 1 2 2 2 2

2 2
12 21 2 2 2 2

1 2 2 2 2

2 2
22 2 2 2 2

2 cos ,

cos ,

.

p p p

p p

p

p p

M m a m l a m b m l J J

m l l J l m a m l

M M m a J m l J

l m a m l

M m a J m l J

θ

θ

= + + + + + +

+ + + + +

= = + + +

+ +

= + + +

 

( )1 2 2,V x x x  represents coriolis and centrifugal functions and is 
given by 

( )

( )
( ) ( )

( )
( )

1 2 2 2

1 2 2
1 2

1 2 2 2

1 2

0
2 sin

, .

0
sin

p

p

l m a m l

V x x
l m a m l

θ θ θ

θ θ

� 	− +
� 
� +
� =
� +
� 
� 

 �

� �

�

 

1 2,K K  are joint flexibility matrices 

5 5
1 2

6 6

0 / 0
, .

0 0 /
k k r

K K
k k r

� 	 � 	
= =�  � 

 � 
 �

 

J  represents the inertia of motors and sprockets 

( )
( )

2
3 5

2
4 6

/ 0
.

0 /

r J J r
J

r J J r

� 	+
� =
� +
 �

 

1 2,B B  contain internal damping of the torsional springs 

5 5
1 2

6 6

0 / 0
, .

0 0 /
c c r

B B
c c r

� 	 � 	
= =�  � 

 � 
 �

 

( ) ( )1 2 2 4,F x F x  are viscous friction vectors 
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( ) ( ) 3 51 1
1 2 2 4

4 62 2

, .
rcc

F x F x
rcc

θθ
θθ

� 	� 	
= = � � 

 � 
 �

��

��
 

 Suppose, also, that there exists additive disturbance. This 
disturbance may arise from measurement noise or simply the 
unmodeled dynamics, e.g., friction in microscopic level. It is 
reasonable to expect that these disturbances are bounded by 
some constants; the constants may be unknown. 
 Let ( ) [ ]4 1 2, T

ai ai aid x d d=  be additive disturbance that may 
depend on all states. We, then, obtain the following state-space 
model 

( )
( ) ( ) ( )( )

( )
( ) ( ) ( )( )

1 2 1 4

2 2 4 2 4 3 2 4

3 4 3 4

4 4 4 4 4 4 4

1

,

,

,

,

,

a

a

a

a

x x d x

x f x g x x d x

x x d x

x f x g x u d x

y x

= +

= + +

= +

= + +

=

�

�

�

�

 (3) 

where 

( ) ( ) [ ]

( ) ( ) [ ]

1
2 2 1 1 2 4 1 1 21 22

211 2121
2 1

221 222

1
4 2 2 2 4 2 1 3 41 42

411 4121
4

421 422

, ,

,

, ,

.

T

T

f M Vx F B x x K x f f

g g
g M K

g g

f J F B x x K x x f f

g g
g J

g g

−

−

−

−

= − + + − + =� 	
 �

� 	
= = � 


 �

= − − − − − =� 	
 �

� 	
= = � 


 �

 

 In the next section, we will design a controller for the 
system in the form (3), where 2 4 2, , ,f f g  and 4g  are unknown. 
The disturbance aid  is bounded by an unknown constant. 
 
3. THREE-LAYER NEURAL NETWORK 
 Fig. 4 depicts a three-layer neural network. Suppose, a 
scalar-valued continuous function ( )1 2, , , : n

nh z z z →� � �  is 
to be estimated by the neural network. We have 1 2, , , ,1nz z z�  
as inputs to the neural network. Variables in the network are 
defined as follows: 

[ ]
[ ]

( ) ( ) ( ) ( )

1
1 2

( 1)
1 2

1
1 2 ( 1)

1
1 2

, , , ,1 ,

, , , ,

, , , , 1, 2, , ,

, , , ,1 ,

T n
n

n l
l

T n
i i i i n

T
T T T T l

l

Z z z z

V v v v

v v v v i l

S V Z s v Z s v Z s v Z

+

+ ×

+
+

+

= ∈

= ∈

� 	= ∈ =
 �

� 	= ∈
 �

� �

� �

� � �

� �

 

[ ]
( )

1
1 2 1

1 2

, , , , ,

( , , , , , ) .

T l
l l

T T
n

W w w w w

h W V z z z W S V Z

+
+= ∈

= ∈

� �

� �
 

( )s �  can be any appropriate activation function that is a non-
constant, bounded and monotone increasing continuous 
function. We use a sigmoid function 

( ) ( )1/ 1 ,xs x e x−= + ∀ ∈� . 

 This network can uniformly approximate any scalar-valued 
continuous function to any arbitrary accuracy with some 
constant ideal weights * *, ,W V  and some appropriate number of 
hidden-layer nodes, * ,l  as was proved in [13]. From the 
universal approximation property, we have 

* *
1 2( , , , ) ( ) ,T T

nh z z z W S V Z ε= +�  (4)  

where Uε ε<  is approximation error with unknown 0Uε >  
provided that ( )h ⋅  is defined on a compact set .zΩ  
   

Σ

Σ

Σ

( )s �

( )s �

( )s �

l

�
� �

Σ

1
Tv Z

1z

1

2
Tv Z

T
lv Z

1n +

( )1 2, , , nh z z z�

2z

nz

1

11v
12v

l nv

( )1l nv +

1w

2w

lw

1lw +

 
 

Fig. 4. A three-layer neural network. The square represents 
node whose output contains adjustable parameters. 

 
 Note that the foregoing statement is only to assure the 
existence of ideal weights and ideal number of hidden-layer 
nodes. The appropriate number of hidden-layer nodes, in 
practice, can be found from trial and error with the problem in 
consideration. The ideal weights generally are unknown. 
However, in system identification application, the ideal weights 
are typically assumed constant and bounded as in the following 
Assumption. 
 Assumption 2: On the compact set zΩ , the ideal neural 
network weights * *,W V  are constant and bounded by 

* *, , 1, ,U UF
W W V V i m≤ ≤ = � , where UW  and UV  are 

unknown. 
 Note that the neural network weight V  appears 
nonlinearly. According to [14], approximators that are 
nonlinear in their parameters can achieve the same level of 
approximation accuracy as those that are linear and usually 
require fewer number of adjusting parameters. However, since 
the parameter appears nonlinearly, the parameter-tuning law is 
usually more complicated. 
 Since ideal weights are unknown, let Ŵ  and V̂  be the 
estimates of *W  and * ,V  respectively. The estimate of the 
function h  is given by 
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( ) ( )1 2
ˆ ˆ ˆ, , , .T T

nh z z z W S V Z=�  (5) 

 By using Lemma 3.6 in [15], the differences between 
neural network outputs with ideal and estimated weights are 
given by 

* * '

'

ˆ ˆˆ ˆ ˆ( ) ( ) ( )
ˆˆ ,

T T T T T T

T T
u

W S V Z W S V Z W S S V Z

W S V Z d

− = −

+ +

�

�
 (6) 

where  

{ }
* * 1

' ' ' ' ( 1) ( 1)
1 2

' '
ˆ

ˆˆ ˆ ˆ, , ( ) ,
ˆ ˆ ˆ ˆ, , , ,0 ,

ˆ ˆ( ) [ ( )] / , 1,2, , ,

( ) 1/(1 ), .

T
a i

T l

l l
l

T
i i a a z v z

x

W W W V V V S S V Z

S diag s s s

s s v Z d s z dz i l

s x e x

+

+ × +

=

−

= − = − = ∈

= ∈

= = ∈ =

= + ∀ ∈

� � �

� �

� �

�

 

The residual term ud  is bounded by 
* ' * ' *

1
ˆ ˆˆ ˆ .T T

u F F
d V ZW S W S V Z W≤ + +  (7) 

 Note that W�  and V�  appear linearly in (6). This is 
important since from Assumption 2, ˆW W= ���  and ˆV V= ��� , 
therefore the weight adaptation laws can be easily designed 
using this linear structure. 
 
4. BACKSTEPPING AND VARIABLE STRUCTURE 
CONTROLLER 
 In this section, we design a controller that makes link 
angular positions 1θ  and 2θ  track desired values whereas all 
closed-loop signals remain bounded. We require the following 
assumptions. 
 Assumption 3: The additive disturbance ( )4 ,aikd x  where 

1, , 4, 1,2,i k= =�  is bounded by ( )4 ,aik aikUd x d<  where 
aikUd  is an unknown constant. 

 Assumption 4: The inverses of , 2, 4,ig i∀ =  matrices in (3) 
are positive definite. 
 Assumption 5: The desired trajectory [ ]1 11 12, T

d d dx x x=  is 
sufficiently smooth. 
 In backstepping design, we try to reduce the error between 
actual state and desired state of each subsystem. The tracking 
error is the error of the first subsystem. Let 

[ ]1 2, , 1, , 4T

i i i i ide e e x x i= = − = �  be the errors. 
 Step 1:  
 Let the virtual control law of the first subsystem be 

[ ]2 1 1 1 2 21 22, ,T

d d dvsc d dx c e x u x x= − + + =�  

where 1c  is a positive design parameter, 2dvscu  is variable 
structure control law to be designed. From Assumption 3, we 
have the following inequality 

( ) *
1 4 1 1 , 1, 2,T

a j j jd x K jφ≤ ∀ =  

where *
1 1 ,j a jUK d=  1 1.jφ =  

 We let the smooth variable structure control law be in the 

form [ ]2 2 1 2 2, ,T

dvsc dvsc dvscu u u=  where 

1
2 1 1 1

1

2ˆ ˆ arctan ,j
dvscj j j j

j

e
u K Kφ

π µ
� �� �
� �= − = − � �� �� �

� �� �
 

1 jµ  is a small positive design parameter, 1
ˆ

jK  approximates 
*
1 jK  with error given by *

1 1 1
ˆ .j j jK K K= −�  

 The time derivative of the error of the first subsystem 
becomes 

( ) ( )1 1 1 2 1 1 2 2 1 1

2 1 1 2 1.
d a d d a d

dvsc a

e x x x d x e x d x

e c e u d

= − = + − = + + −
= − + +

� � � � �
 

 Let the weight update law be 

1 1 1 1 1 1
ˆ ˆ[ ],j k j j j k j jK e Kφ σ= Γ −�  

where 1 10, 0, 1, 2.k j k j jσΓ > > ∀ =  
 Using the following facts 

22 22 2* *ˆ ˆ2 ,

2
0 arctan 0.2785 , ,

TK K K K K K K

αα α µ α
π µ

= + − ≥ −

� �≤ − ≤ ∀ ∈� �
� �

� � �

�

 (8) 

the time derivative of the Lyapunov function  
2

1
1 1 1 1 1 1

1

1 1
,

2 2
T T

j k j j
j

V e e K K−

=

= + Γ� � �  

is given by 
2

1
1 1 1 1 1 1

1

T T
j k j j

j

V e e K K−

=

= + Γ� �� � ��  

( )
2

* *
1 2 1 1 1 1 1 1 1 1 1 1 1 1

1

2 2

1 2 1 1 1 1 1 1
1

ˆ

/ 2 ,

T T T T T
j j j j j j j k j j

j

T T
k j j

j

e e e c e K e K e K K

e e e c e K

φ φ σ

σ ξ

=

=

≤ − + − + −

≤ − − +

�

�

�

�

 

where 

( )2 2*
1 1 1 1 1

1

0.2785 / 2 .j a jU k j j
j

d Kξ µ σ
=

= +�  

 Step 2: 
 This step is different from the first step because there are 
unknown functions 2f  and 2g  in this second subsystem. The 
time-derivative of the error of the second subsystem is given by 

( )2 2 2 2 2 3 2 2 .d a de x x f g x d x= − = + + −� � � �  

 Suppose we know 2f  and 2 ,g  and assume there is no 
disturbance 1ad  and 2ad  for now, then we can choose the 
virtual control input as 

( )* 1
3 1 2 2 2 2 2 .d dx e c e g f x−= − − − − �  (9) 

Using the Lyapunov function 1
2 1 1 2 2 2/ 2 / 2,T TV e e e g e−= +  we 
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have 2 1 1 1 2 2 2
T TV c e e c e e= − −�  which is negative definite, therefore, 

the errors 1e  and 2e  converge to zero. 
 Since we do not know 2f  and 2 ,g  we need to modify the 
ideal control input *

3 .dx  From (9), the unknown part is 
( ) [ ]1* * * 2

2 2 2 2 2 2 2 21 22( ) ( ) , ,
T

dh Z g x f x x h h
−

� 	− = ∈
 ��� �  where *
2 jh  

is a scalar-valued continuous function of 1 2, ,x x  and 2 .jdx�  We 
proceed by estimating each unknown part using a three-layer 
neural network. From (4), we have 

* *
* 21 21 21 21 21
3 1 2 2 * *

22 22 22 22 22

( )
.

( )

T T

d T T

W S V Z
x e c e

W S V Z

ε
ε

� 	−
= − − − � −
 �

  

*
2 jW  and *

2 jV  are unknown. Let 2
ˆ

jW  and 2̂ jV  be their estimates 
and add smooth variable structure control law to handle the 
uncertainties, we have the virtual control law 

[ ]21 21 21 21
3 1 2 2 3 31 32

22 22 22 22

ˆ ˆ( )
, .

ˆ ˆ( )

T T
T

d dvsc d dT T

W S V Z
x e c e u x x

W S V Z

� 	
= − − − + =� 

� 
 �
 

 From (4), (7), and Assumption 3, we have 
*

2 2 2 2 2 ,T
u j j a j j jd d Kε φ+ + ≤   

where  

* * * *
2 2 2 2 2 21

' '
2 2 2 2 2 2 2

, , ,

ˆ ˆˆ ˆ, , 1 , 1, 2.

T

j j j j jU a jUF

T
T T

j j j j j j j
F

K V W W d

Z W S S V Z j

ε

φ

� 	= + +

 �

� 	= ∀ =

 �

 

 We let the smooth variable structure control law be 
[ ]3 3 1 3 2, ,T

dvsc dvsc dvscu u u=  where 

3 2 2
ˆ ,T

dvscj j ju K φ= −  

2' '
2 2 2 2 2 2

2

2' '
2 2 2 2 2 2 2

2

2

2

2ˆ ˆˆ ˆarctan

2ˆ ˆˆ ˆarctan ( ) .

2
arctan ( )

jT T
j j j j j jF F

j

jT T
j j j j j j j

j

j

j

e
Z W S Z W S

e
S V Z S V Z

e

π µ

φ
π µ

π µ

� 	� �
� � �� �� � �
� 
� =
� 
� 
� 
� 
� 
 �

 

 The time derivative of the error of the second subsystem 
becomes 

3 1 2 2

'
21 21 21 21 21 21

'
21 21 21 21 21 21 21 212 2

'
22 22 22 22 22 22

'
22 22 22 22 22 22 22 22

ˆ ˆ ˆ( )
ˆˆ ˆ .

ˆ ˆ ˆ( )
ˆˆ ˆ

T T

T T T
u a

T T

T T T
u a

e e c e

W S S V Z

W S V Z d K de g

W S S V Z

W S V Z d K d

ε

ϕ

ε

ϕ

− −� �
� �

� 	− −� �
� � �− − − +� = � �+� � �− −� � �
� � �− − − +� 
 �� �

�

��

�

�

 

 Let the weight update laws be 

'
2 2 2 2 2 2 2 2 2

'
2 2 2 2 2 2 2 2

2 2 2 2 2 2

ˆ ˆˆ ˆ ˆ[( ) ],

ˆˆ ˆ ˆ[ ],

ˆ ˆ[ ],

T
j w j j j j j j w j j

T
j v j j j j j v j j

j k j j j k j j

W S S V Z e W

V Z W S e V

K e K

σ

σ

φ σ

= Γ − −

= Γ −

= Γ −

�

�

�

 

and using the facts (8), and 

{ }

22 22 2* *

22 22 2* *

ˆ ˆ2 ,

ˆ ˆ2 ,

T

T

F FF FF

W W W W W W W

tr V V V V V V V

= + − ≥ −

= + − ≥ −

� � �

� � �
 

the time derivative of the Lyapunov function 

(

{ } )

2
1 1

2 1 2 2 2 2 2 2
1

1 1
2 2 2 2 2 2

1 1
2 2

,

T T
j w j j

j

T T
j v j j j k j j

V V e g e W W

tr V V K K

− −

=

− −

= + + Γ

+ Γ + Γ

� � �

� � � �

 

derived similar to that in step 1, is given by 

( )
( ) ( )

2 2 2

2 2 3 2 2 2 2
1

2 2 2 2

1 1 1

/ 2 / 2

/ 2 ,

T
w j j v j j F

j

T
i i i i kij ij

i i j

V e e W V

e c e K

σ σ

ξ σ

=

= = =

≤ − +

− − −

�

� ��

� � �

�

 

where  

( )
2

* * *
2 2 2 2 2 2 21

1

2 2 2* * *
2 2 2 2 2 2

0.2785

/ 2 / 2 / 2 .

j j j j jU a jUF
j

w j j v j j k j jF

V W W d

W V K

ξ µ ε

σ σ σ

=

�= + + + +



	+ + + �

�
 

 Step 3: 
 This step is similar to step 1. Let the virtual control law be 

[ ]4 2 3 3 3 4 41 42, .T

d d dvsc d dx e c e x u x x= − − + + =�  

We use the smooth variable structure control law as 
[ ]4 4 1 4 2, ,T

dvsc dvsc dvscu u u=  where 

3
4 3 3 3

3

2ˆ ˆ arctan .j
dvscj j j j

j

e
u K Kφ

π µ
� �� �
� �= − = − � �� �� �

� �� �
 

The weight update law is 3 3 3 3 3 3
ˆ ˆ[ ].j k j j j k j jK e Kφ σ= Γ −�  

 Using a similar derivation to that in step 1, the time 
derivative of the Lyapunov function 

2
1

3 1 2 3 3 3 3 3
1

1 1
,

2 2
T T

j k j j
j

V V V e e K K−

=

= + + + Γ� � �  

is given by 

( )
( ) ( )

2 2 2

3 3 4 2 2 2 2
1

3 3 2 2

1 1 1

/ 2 / 2

/ 2 ,

T
w j j v j j F

j

T
i i i i kij ij

i i j

V e e W V

e c e K

σ σ

ξ σ

=

= = =

≤ − +

− − −

�

� ��

� � �

�

 

where ( )2 2*
3 3 3 3 3

1

0.2785 / 2 .j a jU k j j
j

d Kξ µ σ
=

= +�  
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 Step 4: 
 This is the last step and is similar to step 2. Let the actual 
control law be 

[ ]41 41 41 41
3 4 4 5 1 2

42 42 42 42

ˆ ˆ( )
, .

ˆ ˆ( )

T T
T

dvscT T

W S V Z
u e c e u u u

W S V Z

� 	
= − − − + =� 

� 
 �
 

The smooth variable structure control law is  
[ ]5 5 1 5 2, ,T

dvsc dvsc dvscu u u=  where 

5 4 4

4' '
4 4 4 4 4 4

4

4' '
4 4 4 4 4 4 4

4

4

4

ˆ ,

2ˆ ˆˆ ˆarctan

2ˆ ˆˆ ˆarctan ( ) .

2
arctan ( )

T
dvscj j j

jT T
j j j j j j

F F
j

jT T
j j j j j j j

j

j

j

u K

e
Z W S Z W S

e
S V Z S V Z

e

φ

π µ

φ
π µ

π µ

= −

� 	� �
� � �� �� � �
� 
� =
� 
� 
� 
� 
� 
 �

 

 Let the weight update laws be 

'
4 4 4 4 4 4 4 4 4

'
4 4 4 4 4 4 4 4

4 4 4 4 4 4

ˆ ˆˆ ˆ ˆ[( ) ],

ˆˆ ˆ ˆ[ ],

ˆ ˆ[ ].

T
j w j j j j j j w j j

T
j v j j j j j v j j

j k j j j k j j

W S S V Z e W

V Z W S e V

K e K

σ

σ

φ σ

= Γ − −

= Γ −

= Γ −

�

�

�

 

The time derivative of the Lyapunov function 

(

{ } )

2
1 1

4 1 2 3 4 4 4 4 4 4
1

1 1
4 4 4 4 4 4

1 1
2 2

,

T T
j w j j

j

T T
j v j j j k j j

V V V V e g e W W

tr V V K K

− −

=

− −

= + + + + Γ

+ Γ + Γ

� � �

� � � �

 

derived similar to that in step 2, is given by 

( )
( )
( ) ( )

2 2 2

4 2 2 2 2
1

2 2 2

4 4 4 4
1

4 4 2 2

1 1 1

/ 2 / 2

/ 2 / 2

/ 2 ,

w j j v j j F
j

w j j v j j F
j

T
i i i i kij ij

i i j

V W V

W V

e c e K

σ σ

σ σ

ξ σ

=

=

= = =

≤ − +

− +

− − −

�

�

� ��

� � �

� �

�

 

where 

( )
2

* * *
4 4 4 4 4 4 41

1

2 2 2* * *
4 4 4 4 4 4

0.2785

/ 2 / 2 / 2 .

j j j j jU a jUF
j

w j j v j j k j jF

V W W d

W V K

ξ µ ε

σ σ σ

=

�= + + + +



	+ + + �

�
 

Let 

11,3 2,4
min min , min 0

0.5 0.5
ji

i j
j

cc

g
ς

−= =

� �� �� �� � ��= >� � � � ��
� �� � ��� �� �

, 
4

1

0k
k

δ ξ
=

= ≥�   

and choose 

{ } { }
{ }

1 1
max max

1
max

, ,

; 2, 4; 1, , 4; 1,2,

wlj wlj vlj vlj

kij kij l i j

σ ςλ σ ςλ

σ ςλ

− −

−

≥ Γ ≥ Γ

≥ Γ = = =�
 

we have 4 4 .V Vς δ≤ − +�  
 From this point on, you can use a standard nonlinear 
analysis technique given, for example, in [16] to conclude that 
all error trajectories are globally uniformly ultimately bounded. 
The ultimate bound, time the trajectories enter the bound, and 
all-time exponential-decay upper bound can also be found, but 
are omitted here. 
 
5. EXPERIMENTAL RESULTS 
 There are 4 neural networks; each has 3 hidden nodes. 
Inputs to each neural network are  

{ }
{ }
{ }
{ }

21 11 12 21 22 21

22 11 12 21 22 22

41 11 12 21 22 31 32 41 42 41

42 11 12 21 22 31 32 41 42 42

, , , , ,1 ,

, , , , ,1 ,

, , , , , , , , ,1 ,

, , , , , , , , ,1 .

d

d

d

d

Z x x x x x

Z x x x x x

Z x x x x x x x x x

Z x x x x x x x x x

=

=

=

=

�

�

�

�

 

 Neural network and controller design parameters are as 
follows: 

0.0001, 5,

0.1, 1.
wij vij kij i

wij vij kij

c

σ σ σ µ
Γ = Γ = Γ = =

= = = =
 

 All initial values are set to zeros. Sampling period is 10 ms. 
The desired trajectory is obtained from passing square wave 
signal of amplitude 3 and 40-second period into the filter 

31/( 2) .s +  
 Experimental results are given in Fig. 5. The control system 
achieves good overall tracking performance as can be seen from 
the results in parts (a) and (b). Both link angular positions 1θ  
and 2θ  are able to follow their desired trajectories quite closely. 
Parts (c) to (f) show estimated values of the unknown functions. 
Parts (g) and (h) are control inputs to the two current amplifiers. 
Their values can be converted to voltage by multiplying with 

1610 / 2 / 2.  
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Fig. 5. Experimental results in 140 seconds. (a) 1θ  versus its 
desired trajectory 1 .dθ  (b) 2θ  versus its desired trajectory 2 .dθ  

(c) Estimated function 21
ˆ .h  (d) Estimated function 22

ˆ .h  (e) 
Estimated function 41

ˆ .h  (f) Estimated function 42
ˆ .h  (g) Control 

input 1.u  (h) Control input 2.u  
 
6. CONCLUSION 
 The controller achieves good tracking performance. 
However, there are some interesting questions left as future 
work. First, the controller is designed based on the assumption 
that the actual robot is in the nonlinear form (3). The fact that 
the actual robot may not be exactly in this form may degrade 
the controller performance. Second, how will the control system 
handle time-varying case, for example, the change in payload?  
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