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ABSTRACT 

 Fractional derivative system has gained its popularity in 

modeling and control because of its long memory property. Only 

recently, residual vibration suppression for the fractional 

derivative oscillatory system using input shaping has been 

studied. Input shaping suppresses residual vibration by using 

destructive interference of impulse responses. So far, only a few 

types of input shapers have been proposed for the fractional 

derivative oscillatory system, using only analytical, closed-form 

solutions. In this paper, input shaper syntheses for explicit 

fractional derivative systems using nonlinear optimization have 

been proposed. This work designs input shapers that have never 

been used with the fractional derivative system before, which 

include fixed-interval input shaper and specified-insensitivity 

input shaper, and extends the type that has already been used to 

a more general, improved input shaper. 

INTRODUCTION 

 Fractional-order systems are based on differentiation and 

integration whose orders are not necessarily integer. It has even 

been shown that the real objects are generally fractional [1]. 

Even though fractional-order systems have been studied for 

more than three centuries, they have just become more useful in 

various science and engineering areas only recently. This is 

largely due to the rapid development of computer technology 

that helps in the realization and approximation of fractional 

derivative and integral. 

 Analogous to the integer-order differential equation, the 

fractional-order differential equation can have oscillatory 

response. The response of the relaxation-oscillation differential 

equation ([3] and [4]) becomes an underdamped oscillation 

when its order is between one and two and becomes an 

undamped oscillation when its order is two. 

 Posicast control was proposed by Smith [5] to suppress the 

oscillatory response of the integer-order differential equation. It 

is based on the cancellation of the impulse responses of the 

system, resulting in zero vibration. The impulse amplitudes as 

well as the apply time locations of the impulses are the design 

parameters to be found. Singer and Seering [6] added 

robustness to uncertainty to the technique and called it input 

shaping. 

 Limited amount of work has been done in designing the 

input shapers for the fractional-order systems. Poty et al. [10] 

designed the zero vibration (ZV) and the zero vibration and 

derivative (ZVD) input shapers for the relaxation-oscillation 

differential system. They considered only the oscillatory part of 

the response in order to obtain closed-form formulas for the 

impulse amplitudes and time locations. Poty et al. [7] considered 

both non-oscillatory and oscillatory parts of the response to 

obtain approximated formulas for the ZV and ZVD input 

shapers. The approximated formulas were designed by finding 

zeros of a series, representing the unit impulse and unit step 

responses. Abid et al. [8] designed the unity-magnitude (UM) 

input shaper for undamped and damped fractional-order 

derivative systems. They obtained closed-form formulas of the 
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UM input shaper for the undamped case, and approximated 

formulas for the damped case. 

 In this paper, for the first time, the problem of finding the 

impulse amplitudes and time locations of the input shapers for 

the fractional-order derivative systems is formulated as a 

nonlinear optimization problem. Four types of the input shapers 

were designed, namely the ZVDk input shaper, the fixed interval 

input shaper, the unity-magnitude input shaper, and the 

specified-insensitivity input shaper. 

PRELIMINARY 

A. Second-Order System 
 The unit impulse response of a second-order, underdamped 

system is given by [2] 
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where m  is the mass, n  is the natural frequency,   is the 

damping ratio, and 2
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frequency.  

 Having N  impulses with amplitudes , 1, 2, ..., ,iA i N  
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 Using (2), the response amplitude at 1
t t  with 1 1A   is 

given by 
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Using (2), the response amplitude at Nt t  with 

, 1, 2, ..., ,iA i N  is given by 
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 The ratio of A  to A


 is then 
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This ratio is called percentage vibration and is the ratio of the 

residual vibration amplitude under an input shaper to the 

residual vibration amplitude of a unit impulse response without 

input shaper. It is a measure of residual vibratory level, used 

most often in the input shaping literature. 

 The percentage vibration can be simplified further as 
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where   is the actual natural frequency, n  is the model 

natural frequency, and 
2

1p n ns j       is one of the 

system’s flexible poles. The sensitivity curve is a plot between 

/ n   and V using the last equality of (4). The curve shows the 

robustness of an input shaper to uncertainty in the model natural 

frequency. 

B. Fractional Derivative System 
 Consider the so-called relaxation-oscillation equation ([3] 

and [4]), 

       ,n n
D y t y t u t    (5) 

where  u t  is the input,  y t  is the output, D  is the 

differential operator, and , .n  
  This equation is one of the 

simplest fractional-order differential equations, found in control 

problems. From [4], the system decays for 1,n   becomes 

damped oscillation for 1 2,n   and becomes undamped 

oscillation for 2.n    

 Laplace transform of (5), with zero initial conditions, leads 

to a transfer function 
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For the case of damped oscillation, where 1 2,n   the unit 

impulse response is given by [7] 
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The first part of the unit impulse response is not oscillatory 

whereas the second part is. 

 Comparing the oscillatory part of (7) to (1), the damping 

ratio of the fractional derivative system is related to the 

fractional order, n , as [8] 
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The percentage vibration (3) remains the same as 
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where   is given by (8), n  is given by (9), and 
2

1 .
d n

     Note that the last equality of (4) remains 

unchanged, so does the sensitivity curve. 

C. Matlab Nonlinear Optimization 
Command 

 A Matlab command, fmincon, solves an optimization 

problem having nonlinear objective function or nonlinear 

constraints, given by 

Find: x   

To minimize:  f x   

Subject to constraints: 

    0, 0, , , ,eq eq eqc x c x Ax b A x b lb x ub       

where  f x  is a nonlinear scalar-valued function;  c x  and 

 eqc x  are nonlinear vector-valued functions; A  and eq
A  are 

constant matrices; , , ,
eq

b b lb ub  are constant vectors; and x is a 

vector of decision variables. 

 The command fmincon has the syntax as follows: 
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where objfun is a function containing the objective function 

  ,f x  0x  is the initial guess of ,x  nonlcon is a function 

containing the nonlinear constraints  c x  and ,
eq

c  and options 

are other Matlab options. 

ZVDK INPUT SHAPER 

 The ZV and ZVD input shapers, proposed in [10] by 

considering only the oscillatory part of (7), have impulse 

amplitudes and time locations as 
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respectively, with  
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Note that these ZV and ZVD shapers are the same as those of 

[11] where   is given by (8), n  is given by (9), and 
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     Therefore, the general ZVDk input shaper can 

be found from generalized formulas: 

 

 

1

1 2

0

1

1
, 1 ,

1 1

1, 2, ..., 2,

i

i ik
j n

j

k
K

i
A t i

k
K

j

i k



 







 
 

 
  

  
 
 

 



 
where  

 
 

!

! !

n n

r r n r

 
 

 
 

is the combination of n  things taken r  at a time. 

 Ref. [7] considered both non-oscillatory and oscillatory 

parts of (7). The ZV and ZVD input shapers were designed by 

finding zeros of the series, representing the unit impulse and unit 

step responses. The impulse amplitudes and time locations of the 

resulting input shapers were given by approximated formulas. 

For the ZV input shaper,  
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For the ZVD input shaper, 1t  and 2t  were the same as those of 

the ZV input shaper,  
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 In this and following sections, the open-loop input shaping 

system as shown in Fig. 1 will be applied where su  is the shaped 

input. 

Input

Shaper

u Fractional

Derivative

System

su y

 

Fig. 1 Open-loop input shaping system. 

 Consider a fractional derivative system (6), with 1.9n   

and 1   as in [8]. The system has damped oscillation. Use a 

servo sampling time, 0.01 s.st   Table 1 contains the impulse 

amplitudes and time locations of the ZV and ZVD input shapers, 

according to (12)–(15). Note that, when the non-oscillatory part 

of (7) is taken into account in the design of the ZV and ZVD 

input shapers (Eqns. (14) and (15)), the first impulse amplitude 

is smaller and the input shaper length is shorter. This is a result 

of the overshoot reduction from the non-oscillatory part by the 

input shaper. 

TABLE I.  ZV AND ZVD INPUT SHAPERS 

Input shaper Impulse amplitudes and time locations 

ZV in (12) 1 2
0.565, 0.435,A A    

1 20, 3.152.t t    

ZVD in (13) 1 2 3
0.319, 0.492, 0.189,A A A     

1 2 30, 3.152, 6.304.t t t     

ZV in (14) 1 2
0.549, 0.451,A A    

1 20, 3.064.t t    

ZVD in (15) 1 2 3
0.301, 0.495, 0.204,A A A     

1 2 30, 3.064, 6.217.t t t    

FIXED-INTERVAL INPUT SHAPER 

 In this section, an input shaper having a fixed time interval, 

,T  between impulses is obtained using optimization problem 

for the underdamped, fractional derivative system (6). 

 Because the time locations, , 1, 2, ..., ,it i N  of the 

impulses are known, only the impulse amplitudes, 

, 1, 2, ..., ,iA i N  are to be found. The proposed optimization 

problem to find the impulse amplitudes is given as follows: 

Find: , 1, 2, ...,iA i N   

To minimize: V  in (10) 

Subject to constraints: 
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A
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 0, 1, 2, ..., ,iA i N    (17) 

where (16) is to normalize the amplitudes so the final value of 

su  equals that of ,u  and (17) is to obtain only positive impulses. 

This optimization problem can be solved using the fmincon 

command (11) with  1, 1, ..., 1 ,eqA   1,
eq

b   and 

 0, 0, ..., 0 .
T

lb   

 Consider a fractional derivative system (6), with 1.9n   

and 1   as in [8]. Using a servo sampling time, 0.01s,st   

the fixed time interval, 0.1s,T   the initial guess, 

 0
1, 1, ..., 1 ,

T
x   and the number of impulses, 40,N   the 

simulation result is shown in Fig. 2. The original input, ,u  is a 

unit step input. Fig. 2(a) contains the output, ,y  and the input, 

u. The dotted line and the solid line are the outputs without and 

with the input shaper, respectively. It can be seen that, without 

the input shaper, the output oscillates severely. Note that, with 

the input shaper, small overshoot is still present due to the non-

oscillatory part of the unit impulse response (7). Fig. 2(b) shows 

the impulse amplitudes, ,iA  versus their time locations, .it  Fig. 

2(c) presents the sensitivity curve. Note that at large values of 

/ ,n   the minimum value of the percentage vibration, V, is 

larger than zero due to the phase shift, / ,n  in the objective 

function (10).  

 To simulate the fractional derivative system (6), the 

command nid of the N-integer Matlab toolbox [9] was used to 

approximate the fractional-order term,   .
n

s  The bandwidth 

was set equal to 
4 4

10 , 10 ,
    the number of zeros and poles of 

the approximating transfer function was 10, and the 

approximating formula was ‘crone’. 

 Note that when the number of impulses, N, is reduced to 

31,N   which is equivalent to the shaper duration of 3 

seconds, the ZV input shaper in Table I is recovered by the 

fixed-interval input shaper, as shown in Fig. 2(d) with 

1 0.562,A   31
0.438,A   and 0, 2, 3, ..., 30.

i
A i     

 Using the optimization problem, the fixed-interval input 

shaper can be designed to be robust to plant model uncertainty. 

The objective function, V, in (10) is a function of n  and ,  

which are related to the plant parameters, n and ,  by (8) and 

(9). Hence, to find robust input shaper, the objective function of 

the optimization problem can be set equal to the average of the 

functions, V, evaluated at different values of n  or .  For 

example, consider the case when the plant parameter, ,  is 

uncertain and can have a value in a closed set,  0.5, 1.5 ,   

with a nominal value of 1.   From (9), this is equivalent to the 

actual natural frequency being in a closed set,  0.67, 2 ,  

and the model natural frequency being 1 rad/s.n   Let the 

other plant parameter be 1.9.n   From (8), the damping ratio is 

0.083.   Let the objective function be the average of 

 0.67, 0.083 ,V   1, 0.083 ,V   1.33, 0.083 ,V  and 

 2, 0.083 .V  Fig. 3(a) shows the impulse amplitudes of the 
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resulting fixed-interval input shaper with 96N   impulses and 

an input shaper length of 9.50 seconds. Fig. 3(b) contains the 

sensitivity curve. Notice that the percentage vibration, V, is 

minimized for 0.67,   1.33, and 2 rad/s. Fig. 3(c) presents 

the shaped input, ,su  in the dashed line and the output, y, in the 

solid line when the plant parameter, ,  was set to 1.5,   

which is 50% higher than its nominal, model value. The 

designed input shaper can suppress the residual vibration in the 

output well even with 50% uncertainty. Fig. 3(d) shows the 

impulse amplitudes of the ZVDD input shaper with 4 impulses. 

The ZVDD input shaper length is 9.45 seconds, which is 

comparable to that of the designed fixed-interval input shaper. 

Fig. 3(e) contains the sensitivity curve, and Fig. 3(f) presents the 

output and the shaped input. Notice that the residual vibration 

still remains in the ZVDD case.  

Time (s)(a)

, sy u

Time (s)(b)

(c)

y

y

su

iA

 %V

/ n 

Time (s)(d)

iA

 

Fig. 2 (a) Dotted line and solid line are the outputs without and with the input 

shaper, respectively. Dashed line is the shaped input. (b) Input shaper 

amplitudes. (c) Sensitivity curve. (d) Input shaper amplitudes. 

 Fixed-interval input shaper, having negative impulses, can 

be obtained by not enforcing the lower bound, lb, constraint in 

the fmincon command. Fig. 4 contains the simulation result 

where the number of impulses, N, was reduced to 20,N   

which gives the input shaper length of 1.9. Other simulation 

parameters are the same as those used to produce Fig. 2(a)–(c) 

for the positive-impulse case. The output, y, and the shaped 

input, ,su  are given in Fig. 4(a) in the solid and dashed lines, 

respectively. The impulse amplitudes, ,iA  are shown in Fig. 

4(b), and the sensitivity curve is plotted in Fig. 4(c). One main 

advantage of using the negative-impulse input shaper is that it 

can significantly shorten the input shaper length. Due to the 

superposition principle, the length of the positive-impulse input 

shaper can never be shorter than the length of the ZV input 

shaper. However, this is not the case for the negative-impulse 

input shaper, and in fact the length can even be shorter than 1.9 

and still producing good vibration suppression result. However, 

from Fig. 4, two disadvantages of the negative-impulse input 

shaper can be seen clearly. First, since the original input, u, is a 

unit-step input, from Fig. 4(a), the maximum value of the shaped 

input, ,su  exceeds that of the original input, which can lead to 

overcurrenting. Second, from Fig. 4(c), if the actual natural 

frequency is much larger than the model natural frequency 

  ,n   the percentage vibration, V, can exceed 100%, 

which means the input shaper can even amplify the residual 

vibration, leading to instability. 
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Fig. 3 Fixed-interval input shaper ((a)–(c)). ZVDD input shaper ((d)–(f)). (a), (d) 

Input shaper amplitudes. (b), (e) Sensitivity curve. (c), (f) Solid line is the output 

with the input shaper. Dashed line is the shaped input. 

UNITY-MAGNITUDE INPUT SHAPER 

 A type of the negative-impulse input shaper is the unity-

magnitude input shaper [12]. Its impulse amplitudes switch 

between 1 and -1, that is, 

    
1

1 or 1 , 1, 2, ..., ,
i i

i i
A A i N


      

for positive or negative movements, respectively. 

 For undamped second-order system, Ref. [12] proposed 

that the minimum number of impulses is three with time 

locations given by 

    1 2 30, / 3 , 2 / 3 .n nt t t       (18) 

For underdamped second-order system, an optimization 

problem is required to solve for the time locations. 
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Fig. 4 (a) Solid line is the output with the input shaper. Dashed line is the 

shaped input. (b) Input shaper amplitudes. (c) Sensitivity curve. 

 For undamped fractional derivative system, Ref. [8] showed 

that the time locations of the three impulses are given by (18), 

with n  given by (9). For underdamped fractional derivative 

system, Ref. [8] proposed an approximated approach by 

assuming that the rise time of the unit-step response, ,rt  is in 

the middle of 2t  and 3t  and that the unit-step response during 

2t  and 3t  is a tangent line at the middle of the rise time, .rt  The 

resulting unity-magnitude is given by 

 
   2 2

1 1 1

,1 1
0 ' '

2 2

i

r r r ri

n n

A

t y t t y tt
 

 
           

 (19) 

where n  is given by (9), the rise time is 

 

2

1

2

11
tan ,

1
r

n

t



 


  
   

     

 

and  ' ry t  is the derivative of the unit-step response at time 

,rt t  given by 

  

2
1

2

1
tan

1
' .

r n
y t e








        

         

 The proposed optimization problem to find a general unity-

magnitude input shaper is as follows: 

Find: , 1, 2,...,it i N   

To minimize: 
1

N

i

i

t


   

Subject to constraints: 

 1
0,t   

 0, 1, 2, ..., ,it i N     

    max
, 1, 2, ..., ,

j
V V j j m     (20) 

where N is an odd number, 1
,

i i i
t t t


    m is the number of 

frequency points, and  maxV j  is the upper bound of the 

percentage vibration. The first constraint is for 1t  to start at 

zero. The second constraint ensures that the time locations will 

progress forward. The last constraint constrains the percentage 

vibration to a small value. 

 The command fmincon can be used to solve the 

optimization problem above by letting the optimization variable 

be , 1, 2, ..., ;
i

x dt i N   the objective function be 

 
1

;
N

i

i

f x dt


  the nonlinear inequality constraint be 

  max ;c x V V   the linear equality constraint be 

[1, 0, ..., 0]
eq

A   and 0;
eq

b   the lower bound, lb, be a vector 

of zeros; the initial guess, 0 ,x  be a vector of ones; and the upper 

bound of the percentage vibration, max
,V  be zero. 

 Simulation was performed with the same fractional 

derivative plant as in previous sections, that is, the plant (6) with 

1.9n   and 1  . The optimization problem above gave a 

three-impulse unity-magnitude input shaper whose amplitudes 

and time locations are given by 

 
1 1 1

.
0 1.2023 2.1046

i

i

A

t

   
   
  

  (21) 

Fig. 5(a) shows the output in the solid line and the shaped input 

in the dashed line. Fig. 5(b) contains the input shaper 

amplitudes. Fig. 5(c) presents the sensitivity curve. 
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Fig. 5 (a) Solid line is the output with the input shaper. Dashed line is the 

shaped input. (b) Input shaper amplitudes. (c) Sensitivity curve. 

 By using (19), which was currently proposed by [8], the 

three-impulse unity-magnitude input shaper can be computed as 

 
1 1 1

.
0 1.2232 2.0951

i

i

A

t

   
   
  

 (22) 

Comparing (22) to (21), it can be seen that the optimization 

problem can recover the work in [8]. 
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 Moreover, the proposed optimization problem can be used 

to solve for the unity-magnitude input shaper with more than 

three impulses. For example, when 7 impulses are used, that is, 

7,N   with  0.8 , , 1.2j n n n     in the percentage 

vibration constraint (20), the simulation result is shown in Fig. 

6. More robustness can be obtained using the input shaper 

having more impulses. 

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

-1 0 1 2 3 4 5 6 7 8
-1

0

1

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

Time (s)(a)

, sy u

Time (s)(b)

(c)

y

su

iA

 %V

/ n 
 

Fig. 6 (a) Solid line is the output with the input shaper. Dashed line is the 

shaped input. (b) Input shaper amplitudes. (c) Sensitivity curve. 

SPECIFIED-INSENSITIVITY INPUT SHAPER 

 In designing the fixed-interval input shaper in Section IV, 

only the impulse amplitudes are the optimized variables because 

the impulse time locations are known and evenly spaced. In 

designing the unity-magnitude input shaper in Section V, only 

the impulse time locations are the optimized variables because 

the impulse amplitudes are known and switched between +1 and 

-1. 

 In this section, a type of input shaper, based on the 

frequency sampling technique, so-called specified-insensitivity 

input shaper [13], is designed for the fractional derivative 

system using nonlinear optimization. 

 In designing the specified-insensitivity input shaper, both 

the impulse amplitudes and time locations are to be found from 

the following optimization problem: 

Find: , , 1, 2, ...,i it A i N   

To minimize: 
1

N

i

i

t


  

Subject to constraints: 

 1
0,t   

 0, 1, 2, ..., ,it i N    

    max
, 1, 2, ...,

j
V V j j m    (23) 

 
1

1,
N

i

i

A


   

 0, 1, 2, ..., ,iA i N    

where N is an arbitrary number of impulses. Other variables are 

the same as those of the two previous input shapers. 

 The command fmincon can be used to solve the 

optimization problem above by letting the optimization variable 

be  ; ,i ix dt A  1, 2, ..., ;i N  the objective function be 

 
1

;
N

i

i

f x dt


  the nonlinear inequality constraint be 

  max ;c x V V   the linear equality constraint be 

  
2 1

[1, 0, ..., 0; 0, 0, ..., 0,1,1, ..., 1], b 0;1 ;eq eq

N N N

A



   

the lower bound, lb, and the initial guess, 0 ,x  be two vectors of 

zeros; and the upper bound of the percentage vibration, max
,V  be 

zero. 

 Simulation was performed with the same fractional 

derivative plant as in previous sections, that is, the plant (6) with 

1.9n   and 1  . The number of impulses, N, was set equal to 

20. The sampling frequencies in the percentage vibration 

constraint (23) was set equal to  

  0.8 , , 1.2 , 2.5 , 2.75 , 3 ,j n n n n n n        (24) 

which covers two ranges of frequencies. Fig. 7 contains the 

simulation result. The shaped input, ,su  and the output, y, are 

shown in Fig. 7(a), in the dashed line and solid line, respectively. 

The impulse amplitudes are shown in Fig. 7(b), and the 

sensitivity curve is contained in Fig. 7(c). From the sensitivity 

curve, the percentage vibration is attenuated well during the two 

ranges of the sampling frequencies (24). The minimum input 

shaper length was found to be 10.427 s.Nt   

Time (s)(a)

, sy u

Time (s)(b)

(c)

y

su
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 %V
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Fig. 7 (a) Solid line is the output with the input shaper. Dashed line is the 

shaped input. (b) Input shaper amplitudes. (c) Sensitivity curve. 
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CONCLUSIONS 

 Using nonlinear optimization, more complicated, better-

performance input shapers are obtained for fractional derivative 

oscillatory systems. Fixed-interval input shaper can be designed 

to be robust to a wide range of parameter uncertainty and to 

attenuate high-frequency uncertainty. Its impulse can be made 

negative to shorten the input shaper length. For unity-magnitude 

input shaper, by using nonlinear optimization, more impulses can 

be added to the impulse sequence for more robustness. In 

specified-insensitivity input shaper, the input shaper length can 

be minimized whereas multiple modes of vibration can be 

suppressed. 

 Nonlinear optimization, presented in this paper, provides 

flexibility to extend existing input shapers to have additional 

features including to minimize the input shaper length of the 

fixed-interval input shaper, to eliminate overcurrenting and to 

limit high-mode excitation of the negative-impulse input shaper, 

and to be applicable to multivariable flexible system. 

REFERENCES 

[1] Y. Q. Chen, I. Petras, and D. Xue, “Fractional order control 

- a tutorial,” in Proc. ACC 2009, St. Louis, MO, USA, pp. 

1397–1411. 

[2] S. S. Rao, Mechanical vibrations, 5 ed. Upper Saddle 

River, NJ: Prentice Hall, 2010, ch. 4. 

[3] I. Podlubny, Fractional Differential Equations. San Diego, 

CA: Academic Press, 1999, pp. 224–225. 

[4] C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, and V. 

Feliu, Fractional-Order Systems and Controls: 

Fundamentals and Applications. London: Springer, 2010, 

pp. 13–15. 

[5] O. J. M. Smith, “Posicast control of damped oscillatory 

systems,” Proceedings of the IRE, vol. 45, pp. 1249-1255, 

September 1957. 

[6] N. C. Singer and W. C. Seering, “Preshaping command 

inputs to reduce system vibration,” ASME J. of Dynamics 

System, Measurement and Control, vol. 112, pp. 76-82, 

March 1990. 

[7] A. Poty, P. Melchior, B. Orsoni, F. Levron, and A. 

Oustaloup, “ZV and ZVD shapers for explicit fractional 

derivative systems,” in Proc. ICAR 2003, Coimbra, 

Portugal, pp. 399–404. 

[8] A. Abid, R. Jallouli-Khlif, N. Derbel, and P. Melchior, 

“Synthesis of unity magnitude shaper: extension for explicit 

fractional derivative systems,” in Proc. SSD 2016, Leipzig, 

Germany, pp. 108–113. 

[9] D. Valerio. Ninteger Toolbox. Available: 

http://www.mathworks.com/matlabcentral/fileexchange/831

2-ninteger. 

[10] A. Poty, P. Melchior, F. Levron, B. Orsoni, and A. 

Oustaloup, “Preshaping command inputs for explicit 

fractional derivative systems: application to CRONE 

control,” in Proc. ECC 2003, Cambridge, UK, pp. 2279–

2284. 

[11] N. C. Singer and W. C. Seering, “Preshaping command 

inputs to reduce system vibration,” J. of Dynamic Systems, 

Measurement and Control, vol. 112, no. 1, pp. 76–82, Mar. 

1990. 

[12] W. E. Singhose, W. P. Seering, and N. C. Singer, “Time-

optimal negative input shapers,” J. of Dynamic Systems, 

Measurement, and Control, vol. 119, no. 2, pp. 198–205, 

Jun. 1997. 

[13] N. C. Singer and W. P. Seering, “An extension of command 

shaping methods for controlling residual vibration using 

frequency sampling,” in Proc. ICRA 1992, Nice, France, pp. 

800–805.

 


